Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, functionalized bimetallic Au-Pd on multi-walled carbon nanotubes (AuPd/MWCNT) are prepared and their application as electrochemical sensor materials for dopamine detection is explored. Furthermore, the as-prepared composite materials are identified using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray photoelectron spectrometer (XPS). In addition, the experimental results show that AuPd/MWCNT displayed excellent sensing properties to dopamine. Especially, 1% Pd-5% Au/MWCNT showed a wide detection range (0.98–200 μM) and a low detection limit of 0.058 μM for dopamine. The sensor also displayed properties such as repeatability, reproducibility, and stability, which can be ascribed to the large specific surface area and the synergistic effect of the bimetallic nanoparticles. Therefore, the prepared functionalized multi-walled carbon nanotubes have good application prospects in the field of dopamine detection.

Details

Title
Preparation of Bimetallic Au-Pd/MWCNTs Electrode for Detection of Dopamine
Author
Zhu, Zhen 1 ; Hsiang-Ning Luk 2   VIAFID ORCID Logo  ; Yu-Shih, Liu 3 ; Ren-Jang, Wu 3 ; Ming-Hung, Chung 3 ; Xu-Jia, Chang 3 

 School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China 
 Department of Anesthesia, Hualien Tzu-Chi Hospital, Hualien 97002, Taiwan 
 Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan 
First page
1145
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716583411
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.