Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Transmitter-receiver (T-R) probes are widely used in the eddy-current testing of carbon fibre reinforced plastics (CFRP). However, T-R probes have the disadvantage of being highly sensitive to lift-off. On this basis, lift-off interference can be eliminated by differential structure. However, due to the electrical anisotropy of CFRP, the detection sensitivity of the side-by-side T-R probe and traditional R-T-R differential probe are greatly affected by the scanning angle, and the probe often needs to scan the sample along a specific path to achieve the ideal required detection effect. To solve these problems, a symmetrical dual-transmit-dual-receive (TR-TR) differential probe is designed in this paper. The detection performance of the TR-TR probe was verified by simulation and experiments. Results show that the TR-TR probe is less affected by the scanning angle and lift-off when used in CFRP defect detection, and has high detection sensitivity. However, the imaging results of the TR-TR probe do not show the defect characteristics straightforwardly. To solve this problem, a defect feature extraction algorithm is proposed in this paper. The results show that the defect feature extraction algorithm can locate and size the defect more accurately and improve the signal-to-noise ratio.

Details

Title
Non-Destructive Testing of Carbon Fibre Reinforced Plastics (CFRP) Using a Dual Transmitter-Receiver Differential Eddy Current Test Probe
Author
Zhang, Ronghua 1   VIAFID ORCID Logo  ; Wang, Junyu 2 ; Liu, Shiyu 2 ; Ma, Ming 3 ; Fang, Hongying 2 ; Cheng, Junhua 1 ; Zhang, Danqi 1 

 School of Artificial Intelligence, Tiangong University, Tianjin 300387, China 
 School of Control Science and Engineering, Tiangong University, Tianjin 300387, China 
 School of Life Sciences, Tiangong University, Tianjin 300387, China 
First page
6761
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716584269
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.