Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

It is common to find that some of the lactose in dairy powders and pharmaceutical tablets is present in the unstable amorphous state. Therefore, their crystallization thermodynamics in different solvents are particularly important. In this paper, the solubility of α-lactose monohydrate (α-LM) in 15 mono-solvents such as ethanol, isopropanol, methanol, 1-propanol, 1-butanol, 2-butanol, isobutanol, 1-pentanol, isoamylol, 1-hexanol, 1-heptanol, 1-octanol, propanoic acid, acetonitrile, and cyclohexanone was evaluated by using the gravimetric method in the temperature ranges from 274.05 K to 323.05 K at constant pressure (1 atm). In the given temperature range, the solubility of α-LM in these solvents increased with the rising of temperature, the highest solubility of α-LM was found in methanol (2.37 × 104), and the lowest was found in 1-hexanol (0.80 × 105). In addition, the increase of α-LM solubility in isopropanol was the largest. The sequence at 298.15 K was: methanol > 1-butanol > isopropanol > ethanol > 1-propanol > 1-heptanol > isobutanol > propionic acid > 1-pentanol > 1-octanol > acetonitrile > isoamylol > 2-butanol > cyclohexanone > 1-hexanol. Solvent effect analysis shows that the properties of α-LM are more important than those of solvents. The Apelblat equation, λh equation, Wilson model, and NRTL model were used to correlate the experimental values. The root-mean-square deviation (RMSD) and relative average deviation (RAD) of all models were less than 2.68 × 10−2 and 1.41 × 10−6, respectively, implying that the fitted values of four thermodynamic models all agreed well with the experimental values. Moreover, the thermodynamic properties of the dissolution process (i.e., dissolution Gibbs free energy (ΔdisG), molar enthalpy (ΔdisH), and molar entropy (ΔdisS)) for α-LM in selected solvents were determined. The results indicate that ΔdisH/(J/mol) (from 0.2551 to 6.0575) and ΔdisS/(J/mol/K) (from 0.0010 to 0.0207) of α-LM in these solvents are all positive, and the values of ΔdisH and ΔdisS. ΔdisG/(J/mol) (from −0.0184 to −0.6380) are all negative. The values were observed to decrease with rising temperatures, implying that α-LM dissolution is an endothermic, entropy-driven, and spontaneous process. The solid–liquid equilibrium data and dissolution thermodynamics of α-LM were obtained, which provide a basis for industrial production.

Details

Title
Crystallization Thermodynamics of α-Lactose Monohydrate in Different Solvents
Author
Guan, Youliang 1 ; Yang, Zujin 1   VIAFID ORCID Logo  ; Wu, Kui 2   VIAFID ORCID Logo  ; Ji, Hongbing 3   VIAFID ORCID Logo 

 School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China 
 School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an 343009, China 
 School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China 
First page
1774
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716585408
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.