Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

CsPbI3 quantum dots (QDs) are of great interest in new-generation photovoltaics (PVs) due to their excellent optoelectronic properties. The long and insulative ligands protect their phase stability and enable superior photoluminescence quantum yield, however, limiting charge transportation and extraction in PV devices. In this work, we use a fullerene derivative with the carboxylic anchor group ([SAM]C60) as the semiconductor ligand and build the type II heterojunction system of CsPbI3 QDs and [SAM]C60 molecules. We find their combination enables obvious exciton dislocation and highly efficient photogenerated charge extraction. After the introduction of [SAM]C60, the exciton-binding energy of CsPbI3 decreases from 30 meV to 7 meV and the fluorescence emission mechanism also exhibits obvious changes. Transient absorption spectroscopy visualizes a ~5 ps electron extraction rate in this system. The findings gained here may guide the development of perovskite QD devices.

Details

Title
Efficient Exciton Dislocation and Ultrafast Charge Extraction in CsPbI3 Perovskite Quantum Dots by Using Fullerene Derivative as Semiconductor Ligand
Author
Li, Yusheng; Wang, Dandan; Hayase, Shuzi; Yang, Yongge; Ding, Chao  VIAFID ORCID Logo  ; Shen, Qing  VIAFID ORCID Logo 
First page
3101
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716588161
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.