Abstract

The present paper introduces an optimization-oriented method here practiced for designing high performance single antennas in a fully automated environment. The proposed method comprises two sequential major steps. The first one devotes configuring the shape of antenna and determining the feeding point by employing the bottom-up optimization (BUO) method. In this algorithm, the number of microstrip transmission lines (TLs) used to model the radiator is increased consecutively and the shape of the antenna is revised up to finding the initial satisfying results. Secondly, for determining the best design parameters of the configured antenna shape in the first step (i.e., width and length of TLs), deep neural network (DNN) that is based on Thompson sampling efficient multi-objective optimization (TSEMO) is applied. The recommended optimization method is successfully attracted as a problem solver for designers to tackle the subject for antenna design such as the complexity and large dimensions of structures. Hence, the main advantage of the implemented optimization method in this article is to noticeably decrease the required designer’s involvement automatically generating valid layouts. For validating the suggested method, two wideband antennas are designed, prototyped and subjected to experiment. The first optimized antenna covers the frequency band 8.8–10.1 GHz (13.75 % bandwidth) characterized by a maximum gain of 7.13 dB while the second one covers the frequency band 11.3–13.16 GHz (15.2 %) which exhibits a maximum gain of 7.8 dB.

Details

Title
Deep neural learning based optimization for automated high performance antenna designs
Author
Mir, Farzad 1 ; Kouhalvandi, Lida 2 ; Matekovits, Ladislau 3 

 University of Houston, Department of Electrical and Computer Engineering, Houston, Texas, USA (GRID:grid.266436.3) (ISNI:0000 0004 1569 9707) 
 Dogus University, Department of Electrical and Electronics Engineering, Istanbul, Turkey (GRID:grid.19680.36) (ISNI:0000 0001 0842 3532) 
 Politecnico di Torino, Department of Electronics and Telecommunications, Turin, Italy (GRID:grid.4800.c) (ISNI:0000 0004 1937 0343); Politehnica University Timişoara, Faculty of Electronics and Telecommunications, Timişoara, Romania (GRID:grid.6992.4) (ISNI:0000 0001 1148 0861); National Research Council of Italy, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, Torino, Italy (GRID:grid.5326.2) (ISNI:0000 0001 1940 4177) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2722619171
Copyright
© The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.