Full Text

Turn on search term navigation

Copyright © 2022 Li Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

A new method was developed for the identification and determination of L-ergothioneine in cosmetics based on ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The pretreatment method, chromatographic column, chromatographic conditions, and mass spectrometric conditions of cosmetic samples were optimized. Methanol was chosen as the extraction solvent, 85% acetonitrile with 0.1% FA was selected as the mobile phase, and the Waters CORTECS UPLC hydrophilic interaction liquid chromatography (HILIC) column was chosen for the separation. The sample was extracted with methanol and filtered, then separated by HILIC and detected by triple-quadrupole mass spectrometry. The quantitation was done under the matrix calibration curve using the external standard method. The results showed good linear relationships in the range of 5–200 ng/mL, and the correlation coefficient was greater than 0.999 in cosmetic samples. The limit of detection was in the range of 25–50 μg/kg and the limit of quantitation was in the range of 50–100 μg/kg. The recoveries of the method spiked ranged from 85.3% to 96.2% and the relative standard deviation (RSD) was in the range of 0.84%–2.08% (n = 6). The method is simple, quick, and accurate for the determination of L-ergothioneine in cosmetics, and has great practical value.

Details

Title
Determination of L-Ergothioneine in Cosmetics Based on Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry
Author
Liu, Li 1 ; Sun, Lei 2 ; Fan, Sufang 2 ; Ma, Junmei 2 ; Wang, Yi 3 ; Li, Qiang 2 ; Song, Zhengyang 3 ; Sun, Yong 1   VIAFID ORCID Logo  ; Zhang, Yan 2   VIAFID ORCID Logo 

 Beijing Academy of Food Sciences, Beijing 10068, China 
 Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang 050227, China 
 Department of Chemical Engineering, Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Tsinghua University, Beijing 10062, China 
Editor
Suresh Ponnayyan Sulochana
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
ISSN
16878760
e-ISSN
16878779
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2722970515
Copyright
Copyright © 2022 Li Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/