Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, rice bran oil bodies (RBOBs) were filled with varying concentrations of flaxseed gum (FG) to construct an RBOB-FG emulsion-filled gel system. The particle size distribution, zeta potential, physical stability, and microstructure were measured and observed. The molecular interaction of RBOBs and FG was studied by Fourier transform infrared spectroscopy (FTIR). In addition, the rheological and the tribology properties of the RBOB-FG emulsion-filled gels were evaluated. We found that the dispersibility and stability of the RBOB droplets was improved by FG hydrogel, and the electrostatic repulsion of the system was enhanced. FTIR analysis indicated that the hydrogen bonds and intermolecular forces were the major driving forces in the formation of RBOB-FG emulsion-filled gel. An emulsion-filled gel-like structure was formed, which further improved the rheological properties, with increased firmness, storage modulus values, and viscoelasticity, forming thermally stable networks. In the tribological test, with increased FG concentration, the friction coefficient (μ) decreased. The elasticity of RBOB-FG emulsion-filled gels and the ball-bearing effect led to a minimum boundary friction coefficient (μ). These results might contribute to the development of oil-body-based functional ingredients for applications in plant-based foods as fat replacements and delivery systems.

Details

Title
Stability, Structure, Rheological Properties, and Tribology of Flaxseed Gum Filled with Rice Bran Oil Bodies
Author
Li, Xiaoyu 1 ; Wang, Qiuyu 1 ; Jia Hao 1 ; Xu, Duoxia 1 

 Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China 
First page
3110
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724231286
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.