Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Since long-range magnetic ordering was observed in pristine Cr2Ge2Te6 and monolayer CrCl3, two-dimensional (2D) magnetic materials have gradually become an emerging field of interest. However, it is challenging to induce and modulate magnetism in non-magnetic (NM) materials such as rhenium disulfide (ReS2). Theoretical research shows that defects, doping, strain, particular phase, and domain engineering may facilitate the creation of magnetic ordering in the ReS2 system. These predictions have, to a large extent, stimulated experimental efforts in the field. Herein, we summarize the recent progress on ferromagnetism (FM) in ReS2. We compare the proposed methods to introduce and modulate magnetism in ReS2, some of which have made great experimental breakthroughs. Experimentally, only a few ReS2 materials exhibit room-temperature long-range ferromagnetic order. In addition, the superexchange interaction may cause weak ferromagnetic coupling between neighboring trimers. We also present a few potential research directions for the future, and we finally conclude that a deep and thorough understanding of the origin of FM with and without strain is very important for the development of basic research and practical applications.

Details

Title
Recent Progress in Research on Ferromagnetic Rhenium Disulfide
Author
Ren, Hongtao 1   VIAFID ORCID Logo  ; Xiang, Gang 2   VIAFID ORCID Logo 

 School of Materials Science and Engineering, Liaocheng University, Hunan Road No. 1, Liaocheng 252000, China 
 College of Physics, Sichuan University, Wangjiang Road No. 29, Chengdu 610064, China 
First page
3451
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724265793
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.