Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dinitramic acid salts are promising components as oxidizers and burning-rate modifiers of high-energy compositions. However, most of these salts are not free of drawbacks such as hygroscopicity. Therefore, their application under special conditions of use and storage is limited. The synthesis and storage of stable dinitramic acid salts is a topical issue. Here, we synthesized an adduct starting from the nickel salt of dinitramic acid with carbohydrazide and glyoxal to settle the problem of stability and storage of that salt. The chemical composition of the adduct was confirmed by infrared spectroscopy and elemental analysis. The Ni content was determined by atomic emission spectroscopy. Thermogravimetric DSC and TGA analyses showed the adduct to have three decomposition stages. The adduct exhibits a good thermal stability and a low sensitivity to mechanical stimuli. Here, the adduct is demonstrated to be a promising burning-rate inhibitor of pyrotechnic compositions.

Details

Title
Macrocycle as a “Container” for Dinitramide Salts
Author
Sergey G Il’yasov  VIAFID ORCID Logo  ; Glukhacheva, Vera S  VIAFID ORCID Logo  ; Dmitri S Il’yasov; Zhukov, Egor E
First page
6958
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724271901
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.