Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The organic piezoelectric polymer polyvinylidene fluoride (PVDF) has attracted extensive research because of its excellent flexibility and mechanical energy-harvesting properties. Here, the electrospinning technique was taken to fabricate synthesized fiber membranes of a PVDF/cellulose acetate (CA) composite. The obtained PVDF/CA electrospun fiber membranes (EFMs) were employed to prepare a flexible nanogenerator. XRD and FTIR spectroscopy revealed the enhancement of piezoelectric behavior due to an increase in β-phase in PVDF/CA EFMs compared with cast films. The PVDF/CA fibers (mass ratio of PVDF to CA = 9:1) showed an output voltage of 7.5 V and a short-circuit current of 2.1 μA under mechanical stress of 2 N and frequency of 1 Hz, which were 2.5 and two times greater than those of the pure PVDF fibers, respectively. By charging a 4.7 µF capacitor for 15 min with the voltage generated by the PVDF/CA EFMs, nine LED lamps could be lit. The work provides an effective approach to enhancing the piezoelectric effects of PVDF for low-power electronic loading of macromolecule polymers.

Details

Title
Piezoelectric Nanogenerator Based on Electrospinning PVDF/Cellulose Acetate Composite Membranes for Energy Harvesting
Author
Li, Yuanyuan 1 ; Hu, Qing 1 ; Zhang, Rui 1 ; Ma, Wenmei 1 ; Pan, Siwei 2 ; Zhao, Yaohong 2 ; Wang, Qing 2 ; Fang, Pengfei 1   VIAFID ORCID Logo 

 School of Physics and Technology, Wuhan University, Wuhan 430072, China 
 Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510080, China 
First page
7026
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724273544
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.