Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The ecological water diversion project (EWDP) in the Tarim River Basin, China, aims to allocate more surface water to downstream reaches to restore the degraded ecosystems. However, seasonal changes in ecological water diversion; the factors (natural and anthropogenic) controlling the ecological water diversion, whether the seasonal delivery of water temporally corresponded to the vegetation’s seasonal water demands; and the benefits of the ecological water diversion through overflowing surface water irrigation are unclear. To address the above issues, this study examines the intra-annual changes and its influencing factors in ecological water diversion (inundation) in the Daliyaboyi Oasis in the lower Keriya River valley within the Tarim Basin, discusses whether the seasonal delivery of water temporally corresponded to the vegetation’s seasonal water demands, and assesses the ecological benefits of overflowing surface water irrigation. Inundation was quantified by digitizing monthly changes in the inundated area from 2000 to 2018 in the oasis using 184 Landsat images. The results demonstrate that seasonal changes in the inundated area varied significantly, with maximum peaks occurring in February and August; a period of minimal inundation occurred in May. Differences in the July/August peak (i.e., July or August) in inundation dominated the inter-annual variations in the inundated area over the 19-year study period. The two peaks in the inundation area were temporally consistent with the vegetation’s seasonal water demand. Local residents have used ecological water to irrigate vegetation in different parts of the oasis during different seasons, an approach that expanded the inundated area. The February peak in the inundated area is closely linked to elevated downstream groundwater levels and the melting of ice along the river. The August peak is related to a peak in runoff from headwater areas. The minimum May value is correlated to a relatively low value in upstream runoff and an increase in agricultural water demand. Thus, natural factors control the intra-annual and inter-annual variations in the inundated area. Humans changed the spatial distribution of the inundated area and enhanced the water’s ecological benefits, but did not alter the correlation between peak periods of inundation and vegetation water demand. The results from this study improve our understanding of the benefits of the EWDP in the Tarim River Basin.

Details

Title
Factors Influencing Seasonal Changes in Inundation of the Daliyaboyi Oasis, Lower Keriya River Valley, Central Tarim Basin, China
Author
Wang, Jinhua 1 ; Zhang, Feng 1   VIAFID ORCID Logo  ; Luo, Guangming 2 ; Guo, Yuchuan 1 ; Zheng, Jianghua 1 ; Wu, Shixin 3 ; Wang, Dawei 1 ; Liu, Suhong 4 ; Shi, Qingdong 5 

 College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China 
 Hotan Hydrology and Water Resource Survey Bureau, Hotan 848000, China 
 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 
 School of Geography, Beijing Normal University, Beijing 100875, China 
 Key Laboratory of Oasis Ecology Ministry of Education, Xinjiang University, Urumqi 830046, China 
First page
5050
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724304415
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.