Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The development of multi-component seismic acquisition technology creates new possibilities for the high-precision imaging of complex media. Compared to the scalar acoustic wave equation, the elastic wave equation takes the information of P-waves, S-waves, and converted waves into account simultaneously, enabling accurate description of actual seismic propagation. However, inherent attenuation is one of the important factors that restricts multi-component high-precision migration imaging. Its influence is mainly reflected in the following three ways: first, the attenuation of the amplitude energy makes the deep structure display unclear; second, phase distortion introduces errors to the positioning of underground structures; and third, the loss of high frequency components reduces imaging resolution. Therefore, it is crucial to fully consider the absorption and attenuation characteristics of the real Earth during seismic modeling and imaging. This paper aims to develop an accurate attenuation compensation reverse-time migration scheme for complex heterogeneous viscoelastic media. We first utilize a novel viscoelastic wave equation with decoupled fractional Laplacians to depict the Earth’s attenuation behavior. Then, an adaptive stable attenuation compensation operator is developed to realize high-precision attenuation compensation imaging. Several synthetic and field data analyses verify the effectiveness of the proposed method.

Details

Title
Accurately Stable Q-Compensated Reverse-Time Migration Scheme for Heterogeneous Viscoelastic Media
Author
Wang, Ning 1 ; Shi, Ying 1 ; Zhou, Hui 2 

 National Engineering Laboratory for Offshore Oil Exploration, Beijing 100028, China; School of Earth Science, Northeast Petroleum University, Daqing 163318, China 
 School of Geophysics, China University of Petroleum, Beijing 102249, China 
First page
4782
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724306009
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.