Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a turnkey integrated system that can be operated in real time for real textile manufacturers. Eight types of defects in woven fabric, including stain, broken end, broken weft, hole, nep, double pick, kinky weft and float can be recognized and classified. First, an image is captured by a CMOS industrial camera with a pixel size of 4600 × 600 above the batcher at 20 m/min. After that, the four-stage image processing procedure is applied to detect defects and for classification. Stage 1 is image pre-processing; the filtration of the image noise is carried out by a Gaussian filter. The light source is corrected to reduce the uneven brightness resulting from halo formation. The improved mask dodging algorithm is used to reduce the standard deviation of the corrected original image. Afterwards, the background texture is filtered by an averaging filter, and the mean value is corrected for histogram shifting, so that this system is robust to the texture and color changes of woven fabric. The binary segmentation threshold is determined using the mean value and standard deviation of an image with a normal sample. Stage 2 uses adaptive binarization for separation of the background and defects and to filter the noise. In Stage 3, the morphological processing is used before the defect contour is circled, i.e., four features of each block, including the defect area, the aspect ratio of the defect, the average gray level of the defect and the defect orientation, which are calculated according to the range of contour. The image defect recognition dataset consists of 2246 images. The results show that the detection success rate is 96.44%, and the false alarm rate is 3.21%. In Stage 4, the defect classification is implemented. The support vector machine (SVM) is used for classification, 230 defect images are used as training samples, and 206 are used as test samples. The experimental results show that the overall defect recognition rate is 96.60%, providing that the software and hardware equipment designed in this study can implement defect detection and classification for woven fabric effectively.

Details

Title
Automated Optical Inspection for Defect Identification and Classification in Actual Woven Fabric Production Lines
Author
Chung-Feng, Jeffrey Kuo  VIAFID ORCID Logo  ; Wei-Ren, Wang; Barman, Jagadish
First page
7246
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724312467
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.