It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The mechanism of hydrolysis and extension diffusion of heavy metal pollution elements infiltrated into rock is analyzed by the theory of ion hydrolysis displacement. The hydrolysis properties of typical elements such as cadmium, zinc, lead, and copper are verified by convective dispersion model, and the diffusion law and fission characteristics of heavy metal with different hydrolysis constant are discussed. A three-dimensional constitutive relation model of rock extension diffusion surface is established by combining viscoelastic monomer model with a damage monomer model. Considering the influence of diffusion coefficient, hydrolysis constant, deformation factor, and other parameters, the rationality of the test results and model fitting results of heavy metal invading rock are verified. The results show that the replacement rate of colloidal mineral elements in rock varies with different hydrolysis constant, when the hydrolysis constant is large, the extension diffusion rate in rock is large; otherwise, the extension diffusion rate is small. Constitutive relation curves of polluted rock with different lithologies are in good agreement with the fitting results of the combination model under the influence of the same test conditions and the same parameters.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Civil Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China