It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recycled particle flux can be a significant contributor to tokamak edge plasma density, and lead to reductions in edge temperature. Previous measurements have shown that solid evaporated lithium coatings can lead to lowered edge recycling, corresponding decreases in edge plasma density, and a radial broadening of the electron temperature profile. During the 2010 run campaign, The National Spherical Torus Experiment operated with both solid and liquid lithium coatings on its plasma-facing components. A section of graphite outer divertor tiles was replaced with a substrate designed to hold liquid lithium coatings. While the lithium coatings on the graphite remain solid, the plates can be heated to render the lithium into a liquid state.
In preparation for this campaign, a 99-tip dense Langmuir probe array was installed in the outboard divertor to measure scrape-off layer density and temperature. The probe array was located so as to radially span these two different divertor surfaces and measure their respective effects on the temperature and density. A dual-band fast IR camera was also installed to provide surface temperature and heat flux measurements. The use of two-color IR thermography allows for an assessment of effects due to the uncertain, phase- and purity-dependent emissivity of the lithium coatings.
The present study compares the derived heat fluxes from these diagnostics to determine an effective classical sheath heat transmission coefficient γ, a measure of the heat flow reaching the device surfaces as a function of plasma parameters, namely the edge temperature and density - quantities which should be modified by lithium coatings. The sheath heat transmission is of great interest to future devices, which can expect to see large steady-state and transient heat fluxes to material surfaces. The value of γ was measured to be 2.49 +/- 0.04, a factor of ∼3 smaller than the expected classical result of ∼7. The implications of this measurement and the changes to edge plasma profiles that are possible causes of the lower observed value are discussed. Supported by US-DOE Contract DE-AC02-09CH11466.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer