It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The utilization of readily available and non-toxic water by photocatalytic water splitting is highly attractive in green chemistry. Herein we report that light-induced oxidative half-reaction of water splitting is effectively coupled with reduction of organic compounds, which provides a light-induced avenue to use water as an electron donor to enable reductive transformations of organic substances. The present strategy allows various aryl bromides to undergo smoothly the reductive coupling with Pd/g-C3N4* as the photocatalyst, giving a pollutive reductant-free method for synthesizing biaryl skeletons. Moreover, the use of green visible-light energy endows this process with more advantages including mild conditions and good functional group tolerance. Although this method has some disadvantages such as a use of environmentally unfriendly 1,2-dioxane, an addition of Na2CO3 and so on, it can guide chemists to use water as a reducing agent to develop clean procedures for various organic reactions.
While reductive coupling strategies in organic synthesis are crucial, most require additional sacrificial or toxic reagents. Here, authors demonstrate water as mild reducing agent in the photochemical reduction of organic compounds paired with photocatalytic water oxidation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer