It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Geometries of the 3-methyl-1-phenyl-4-(phenyldiazenyl)-1H-pyrazol-5-amine azo-dye compound and its tautomer were optimized using B3LYP and M06-2X functionals in coupling with TZVP and 6–311 + G(d,p) basis sets. The 1H- and 13C-NMR chemical shifts of all species were predicted using 13 density functional theory (DFT) approaches in coupling with TZVP and 6–311 + G(d,p) basis sets at the different optimized geometries by applying the using GIAO method using the eight geometries. The selected functionals are characterized by having different amount of Hartree–Fock exchange. The selected DFT methods were B3LYP, M06-2X, BP86, B97XD, TPSSTPSS, PBE1PBE, CAM-B3LYP, wB97XD, LSDA, HSEH1PBE, PW91PW91, LC-WPBE, and B3PW91. The results obtained were compared with the available experimental data using different statistical descriptors such as root mean square error (RMSE) and maximum absolute error (MAE). Results revealed that the prediction of the 1H-NMR chemical shifts has more significant dependence on the applied geometry than that of the prediction of the 13C-NMR chemical shifts. Among all the examined functionals, B97D and TPSSTPSS functionals were found to be the most accurate ones, while the M06-2X functional is the least accurate one. Results also revealed that the prediction of NMR chemical shifts using TZVP basis sets results is more accurate results than 6–311 + G(2d,p) basis set.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Al Azhar University-Gaza, Department of Chemistry, Faculty of Science, Gaza, Palestine (GRID:grid.133800.9) (ISNI:0000 0001 0436 6817)
2 King Abdulaziz University, Chemistry Department, Faculty of Science, Jeddah, Saudi Arabia (GRID:grid.412125.1) (ISNI:0000 0001 0619 1117)




