It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The α-class carbonic anhydrase (CA, EC 4.2.1.1) from the protozoan pathogen Trypanosoma cruzi, TcCA, was investigated earlier for its inhibition with anions, sulphonamides, thiols and hydroxamates, well-known classes of CA inhibitors (CAIs). Here we present the first inhibition study of this enzyme with phenols, which possess a diverse CA inhibition mechanism compared to the previously investigated compounds, which are all zinc binders. Indeed, phenols are known to anchor to the zinc coordinated water molecule within the enzyme active site. In a series of 22 diversely substituted phenols, the best inhibitors were simple phenol, pyrocatechol, salicylic acid, 3,5-difluorophenol, 3,4-dihydroxy-benzoic acid, 3,6- dihydroxy-benzoic acid, caffeic acid and its des-hydroxy analog, with KIs of 1.8 − 7.3 µM. The least effective TcCA inhibitor was 3-chloro-4-amino-phenol (KI of 47.9 µM). Although it is not yet clear whether TcCA can be considered as an anti-Chagas disease drug target, as no animal model for investigating the antiprotozoan effects is available so far, finding effective in vitro inhibitors may be a first relevant step towards new antiprotozoal agents.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (FI), Italy
2 Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Ltd, Tampere University Hospital, Tampere, Finland