Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hyphozyma roseonigra is a dimorphic yeast used as a biocatalyst to convert sclareol, a plant diterpenoid to ambradiol. The latter is an intermediate in the synthesis of ambrafuran, a high-value chemical in the fragrance industry. Unfortunately, little is known about the underlying biochemistry of this microorganism. In this study, the integration of multi-platform-based metabolomics was used to better comprehend H. roseonigra from a biochemical perspective. The focus on metabolomic changes during growth and development was accomplished using untargeted LC–MS and NMR analyses. Cell suspensions were grown in batch culture over a 14-day period, and cells from the early-, log-, and stationary phases were harvested every second day using platform-compatible extraction procedures. Following chemometric analysis of LC–MS and NMR data acquired from both intra- and extracellular extracts, the identified discriminatory ions annotated from the endo- and exometabolomes (metabo-fingerprinting and metabo-footprinting) were found to fall predominantly in the primary metabolism class. Pathway mapping and feature-based network correlation analysis assisted in gaining insights into the active metabolic pathways during growth and development and did not flag terpene synthesis. This study provides novel insights into the basic metabolic capabilities of H. roseonigra and suggests that sclareol is metabolized as the detoxification of a hydrophobic xenobiotic compound.

Details

Title
Untargeted Metabolomics Exploration of the Growth Stage-Dependent Chemical Space of the Sclareol-Converting Biocatalyst Hyphozyma roseonigra
Author
Ncube, Efficient N 1 ; Sitole, Lungile 1 ; Steenkamp, Paul A 1   VIAFID ORCID Logo  ; Steenkamp, Lucia H 2 ; Dubery, Ian A 1   VIAFID ORCID Logo 

 Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg 2006, South Africa 
 Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), P.O. Box 395, Pretoria 0001, South Africa 
First page
1225
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728451849
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.