Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

GaN-based high electron mobility transistors (HEMTs) are shown to have excellent properties, showing themselves to perform well among the throng of solid-state power amplifiers. They are particularly promising candidates for next-generation mobile communication applications due to their high power density, frequency, and efficiency. However, the radio-frequency (RF) dispersion aroused by a high surface-state density inherent in nitrides causes the degradation of GaN devices’ performance and reliability. Although various dispersion suppression strategies have been proposed successively—including surface treatment, passivation, field plate, cap layer, and Si surface doping—outcomes were not satisfactory for devices with higher frequencies until the emergence of a novel N-polar deep recess (NPDR) structure broke this deadlock. This paper summarizes the generation of dispersion, several widespread dispersion containment approaches, and their bottlenecks under high frequencies. Subsequently, we highlight the NPDR structure as a potential substitute, evaluate its technical benefits, and review the continuous exertions in recent years.

Details

Title
Surface Dispersion Suppression in High-Frequency GaN Devices
Author
Zhu, Pengfei; Ni, Xianfeng; Fan, Qian; Gu, Xing
First page
1461
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728461204
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.