Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Image fusion technology can process multiple single image data into more reliable and comprehensive data, which play a key role in accurate target recognition and subsequent image processing. In view of the incomplete image decomposition, redundant extraction of infrared image energy information and incomplete feature extraction of visible images by existing algorithms, a fusion algorithm for infrared and visible image based on three-scale decomposition and ResNet feature transfer is proposed. Compared with the existing image decomposition methods, the three-scale decomposition method is used to finely layer the source image through two decompositions. Then, an optimized WLS method is designed to fuse the energy layer, which fully considers the infrared energy information and visible detail information. In addition, a ResNet-feature transfer method is designed for detail layer fusion, which can extract detailed information such as deeper contour structures. Finally, the structural layers are fused by weighted average strategy. Experimental results show that the proposed algorithm performs well in both visual effects and quantitative evaluation results compared with the five methods.

Details

Title
Fusion of Infrared and Visible Images Based on Three-Scale Decomposition and ResNet Feature Transfer
Author
Ji, Jingyu 1 ; Zhang, Yuhua 1 ; Hu, Yongjiang 1 ; Li, Yongke 1 ; Wang, Changlong 1 ; Lin, Zhilong 1 ; Huang, Fuyu 2 ; Yao, Jiangyi 3 

 Department of UAV, Army Engineering University, Shijiazhuang 050003, China 
 Department of Electronic and Optical Engineering, Army Engineering University, Shijiazhuang 050003, China 
 Equipment Simulation Training Center, Army Engineering University, Shijiazhuang 050003, China 
First page
1356
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728462085
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.