Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Increasing demand for water for agricultural use within the Dougherty Plain of the southeastern United States has depleted surface water bodies. In karstic landscapes, such as the Dougherty Plain in southwest Georgia where the linkages between surface and ground waters are close, there is a need to understand the physical characteristics of the subsurface that allow these close linkages. Having a better understanding of the subsurface characteristics will aid numerical modeling efforts that underpin policy decisions and economic analyses. Two common features on this karstic landscape are draws and geographically isolated wetlands. Using LiDAR, aerial imagery, and ground-penetrating radar, this study investigates the subsurface characteristics of a draw and a series of geographically isolated wetlands. GPR reflections indicative of karst features are laterally continuous and connect the landscape to the nearby Ichawaynochaway Creek. The identification of the size and scale of the laterally continuous karstic features will guide the implementation of groundwater models used to determine irrigation and forest restoration programs while minimizing the impacts of water use on surface streams and the ecosystems.

Details

Title
Ground-Penetrating Radar Detection of Hydrologic Connectivity in a Covered Karstic Setting
Author
Honings, Joseph P 1 ; Wicks, Carol M 1   VIAFID ORCID Logo  ; Brantley, Steven T 2 

 Department of Geology & Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA 
 The Jones Center at Ichauway, 3988 Jones Center Drive, Newton, GA 39870, USA 
First page
168
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23065338
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728472800
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.