Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Chrysoperla zastrowi sillemi (CZS) is a generalist predator of arthropod pests in different crops and is distributed in wide geographical regions. Being a natural predator, CZS shares an ecological niche with the pests and is exposed to several groups of pesticides including imidacloprid. Due to continuous exposure, it has developed resistance to several insecticides. Transcriptomes of imidacloprid-resistant and susceptible strains have been generated and compared for expression differences. From the transcriptome, sequences belonging to the CYP gene family have been mined for their nomenclature and classification into the four CYP clans. Putative functions of the CYP families in CZS have been identified by phylogenetic analysis including CYP sequences from Drosophila and Tribolium. Further, differential expressions of CYP genes have been validated using qRT-PCR. We found nine CYP genes to be downregulated and one to be upregulated after imidacloprid treatment. The information from current study can be exploited for the effective implementation of IPM as it aims at sustainable and eco-friendly crop yield improvement.

Abstract

The aphid lion, Chrysoperla zastrowi sillemi (Neuroptera: Chrysopidae) is a highly effective beneficial predator of many agricultural pests and has developed resistance to several insecticides. Understanding the molecular mechanism of insecticide resistance in the predators is crucial for its effective application in IPM programs. Therefore, transcriptomes of imidacloprid-resistant and susceptible strains have been assessed using RNA-seq. Cytochrome P450 is one of the important gene families involved in xenobiotic metabolism. Hence, our study focused on the CYP gene family where mining, nomenclature, and phylogenetic analysis revealed a total of 95 unique CYP genes with considerable expansion in CYP3 and CYP4 clans. Further, differential gene expression (DGE) analysis revealed ten CYP genes from CYP3 and CYP4 clans to be differentially expressed, out of which nine genes (CYP4419A1, CYP4XK1, CYP4416A10, CYP4416A-fragment8, CYP6YL1, CYP6YH6, CYP9GK-fragment16, CYP9GN2, CYP9GK6) were downregulated and one (CYP9GK3) was upregulated in the resistant strain as compared to the susceptible strain. Expression validation by quantitative real-time PCR (qRT-PCR) is consistent with the DGE results. The expansion and differential expression of CYP genes may be an indicator of the capacity of the predator to detoxify a particular group of insecticides.

Details

Title
Comparative Transcriptome Analysis to Reveal Differentially Expressed Cytochrome P450 in Response to Imidacloprid in the Aphid Lion, Chrysoperla zastrowi sillemi (Esben-Petersen)
Author
Pathak, Jyoti 1   VIAFID ORCID Logo  ; Gandhi Gracy Ramasamy 1   VIAFID ORCID Logo  ; Agrawal, Aditi 1 ; Srivastava, Subhi 1 ; Bhusangar Raghavendra Basavaarya 1 ; Mohan Muthugounder 1 ; Muniyappa, Venugopal Kundalagurki 1 ; Pratheepa, Maria 1 ; Rai, Anil 2 ; Venkatesan, Thiruvengadam 1   VIAFID ORCID Logo 

 Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India 
 Centre for Agricultural Bioinformatics, Indian Agricultural Statistical Research Institute, Pusa, New Delhi 110012, India 
First page
900
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754450
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728483297
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.