Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

At present, secure multi-party computing is an effective solution for organizations and institutions that want to derive greater value and benefit from the collaborative computing of their data. Most current secure multi-party computing solutions use encryption schemes that are not resistant to quantum attacks, which is a security risk in today’s quickly growing quantum computing, and, when obtaining results, the result querier needs to collect the private keys of multiple data owners to jointly decrypt them, or there needs to be an interaction between the data owner and the querier during the decryption process. Based on the NTRU cryptosystem, which is resistant to quantum computing attacks and has a simple and easy-to-implement structure, and combined with multi-key fully homomorphic encryption (MKFHE) and proxy re-encryption, this paper proposes a secure multi-party computing scheme based on NTRU-type multi-key fully homomorphic proxy re-encryption in the blockchain environment, using the blockchain as trusted storage and a trusted execution environment to provide data security for multi-party computing. The scheme meets the requirements of being verifiable, conspiracy-proof, individually decryptable by the querier, and resistant to quantum attacks.

Details

Title
A Blockchain-Based Secure Multi-Party Computation Scheme with Multi-Key Fully Homomorphic Proxy Re-Encryption
Author
Jiang, Yongbo; Zhou, Yuan  VIAFID ORCID Logo  ; Feng, Tao  VIAFID ORCID Logo 
First page
481
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728486639
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.