Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The complex dynamic characteristics of a shipboard power system (SPS) are not only related to its continuous dynamics but also influenced by discrete control behavior. Especially, during combat mission execution of high-power pulse loads (HPPLs), their operation plan as a sequence of discrete control events will cause successive abrupt changes in the continuous dynamics of SPS due to the sudden and intermittent nature of the external attacks, which requires overall comprehension of the hybrid dynamics evolution process driven by discrete events. In this paper, considering the zonal distribution structure of SPS and the influences of extreme events on the discrete dynamics of each zone, the extended hybrid models for each zone, including normal operation configuration and fault configuration, are obtained based on the hybrid automata theory. Then, the global hybrid model of SPS is developed. The mapping relationship of discrete state transition to the continuously controlled system is analyzed to reconstruct the set of differential equations model of the continuous system for the purpose of simulation. Two case studies are carried out to perform the simulation under the proposed hybrid model. It is demonstrated that this proposed method can reveal the operating characteristics of the hybrid dynamic evolution process driven by discrete events, both in normal operation and pulse loads operation. Although the precise measure of discrete states of SPS can be challenging to obtain, especially during the confrontation phase, the proposed method still provides valuable insights on evaluating the sophisticated dynamics of an SPS.

Details

Title
Hybrid Modeling and Simulation for Shipboard Power System Considering High-Power Pulse Loads Integration
Author
Zhu, Wanlu; Jin, Chunpeng; Liang, Zhengzhuo
First page
1507
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728487538
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.