Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Multi-leaf journal foil bearing (MLJFB) is well known for its applications in the air cycle machines (ACMs) of airplanes. However, its frictional energy dissipation mechanism of overlapped foils has not been theoretically studied and is still not clear to researchers. This paper models the frictional sliding/sticking behaviors between adjacent foil leaves based on the tangent gap, applying the penalty method of contact mechanics. Large foil deformations are calculated to simulate the processes of foil assembly and rotor insertion using nonlinear curve beam elements. Predictions of the frictional hysteresis characteristics of MLJFB are obtained, influenced by foil boundary conditions, leaf number, bearing radial clearance and other foil structural parameters, which correlate well with the test results. This study lays solid theoretical foundations for the static and dynamic research of MLJFB.

Details

Title
Investigations on the Frictional Hysteresis Effect of Multi-Leaf Journal Foil Bearing: Modeling, Predictions and Validations
Author
Li, Changlin 1 ; Du, Jianjun 1 ; Li, Jie 1 ; Xu, Zhenni 1 

 School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen 518055, China 
First page
261
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728492579
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.