Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The preference for walking and the resulting pedestrian activities have been considered key success factors for streets, neighborhoods, and cities alike. Although micro- and meso-scale built environment factors that encourage walking have been investigated, the role of macroscopic factors such as regional centrality in explaining street-level pedestrian volume is often neglected. Against this backdrop, this study examines the relationship between built environments and street-level pedestrian volume using Smart Card and pedestrian volume survey data from Seoul after controlling for transport ridership as a proxy for regional centrality. As a preliminary study, we analyzed 36 regression models applying different sets of transit ridership variables and found that the combination of bus ridership within 400 m and subway ridership within 300 m best explained the variation in pedestrian volume on a street. Then, the effects of the 3D variables (density, diversity, and design) on pedestrian volume were compared before and after controlling for ridership within this spatial range. The results demonstrated that, after taking transit ridership into account, the influence of built environment variables is generally reduced, and the decrease is more pronounced among walkshed-level 3D variables than street-level variables. Particularly, while the effect of “design” (street connectivity) on pedestrian volume appeared to be negatively significant in the constrained model, it was found to be insignificant in the unconstrained model which controlled for transit ridership. This suggests that the degree of street connectivity is influenced by regional centrality, and accordingly, the coefficient of the “design” variable in our constrained model might be biased. Thus, to accurately understand the effect of the meso-scale 3D variables on pedestrian volume, both micro- and macro-scale built environmental factors should be controlled.

Details

Title
Exploring the Role of Transit Ridership as a Proxy for Regional Centrality in Moderating the Relationship between the 3Ds and Street-Level Pedestrian Volume: Evidence from Seoul, Korea
Author
Seung-Nam, Kim 1   VIAFID ORCID Logo  ; Chung, Juwon 2 ; Lee, Junseung 3 

 Department of Urban Design and Studies (209-707), Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea 
 Department of Urban Planning and Design Research, The Seoul Institute, 57 Nambusunhwan-ro, 340-gil, Seocho-gu, Seoul 06756, Korea 
 Department of Urban Design and Studies (207-737), Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea 
First page
1749
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2073445X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728496889
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.