Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The direct wave between the transceiver antenna negatively affects the dynamic range and imaging quality of ground penetrating radar (GPR). Suppressing this direct wave is a vital problem in enhancing the performance of the whole GPR system. In this paper, a Minkowski-fractal metamaterial absorber (MMA) with the resistive film is proposed in the GPR transceiver antenna to reduce the mutual coupling. The simulated and measured results indicate that this MMA has an effective wideband absorption in 1.0-8.0 GHz. And the thickness of MMA is only 0.007 λ0 (with respect to 2.0 GHz). This wideband MMA can reduce the mutual coupling of the proposed GPR transceiver antenna by an average of 10 dB. And it also mitigates the time-domain ringing problem of the transmit antenna. Real-world experiments demonstrate that the direct wave from the transmitting antenna can be reduced and the target echo arriving at the receiving antenna can be increased if this MMA is placed in the proposed transceiver antenna. This resistive film-based MMA offers great promise in realizing low-cost, compact, and lightweight GPR antennas, which can also be extended to high-frequency microwave imaging.

Details

Title
Mutual Coupling Suppression of GPR Antennas by Depositing Wideband Meta-Absorber with Resistive Film
Author
Zhou, Yajun 1 ; Guo, Minjie 2 ; Guo, Linyan 1   VIAFID ORCID Logo  ; Zhou, Yi 3 ; Changxin Wei 3 

 School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China 
 College of Physics and Electric Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, China 
 School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China 
First page
7137
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728501338
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.