Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The mechanism of reaction in isobutane/2-butene alkylation systems is extremely complicated, accompanied by numerous side reactions. Therefore, a comprehensive understanding of the reaction pathways in this system is essential for an in-depth discussion of the reaction mechanism and for improving the selectivity of the major products (clean fuel blend components). The alkylation of isobutane/2-butene was studied using a self-made intermittent reaction device with a metering, cooling, reaction, vacuum and analysis system. The alkylates were qualitatively and quantitatively analyzed using a capillary gas chromatography-mass spectrometry-data system (CGC-MS-DS) and capillary gas chromatography with flame ionization detection (CCGC-FID), respectively, and the precision and recovery of the quantitative analytical methods were verified. The results showed that the relative standard deviation (RSD) of the standard sample was below 0.78%, and the recoveries were from 98.53% to 102.85%. Under the specified reaction conditions, 79 volatile substances were identified from the alkylates, and the selectivity of C8 and trimethylpentanes (TMPs) reached 63.63% and 53.81%, respectively. The changes of the main chemical components in the alkylation reaction with time were tracked and analyzed, based on which reaction pathways were determined, and a complex reaction network containing the main products’ and the by-products’ generation pathway was constructed.

Details

Title
Investigation of a Complex Reaction Pathway Network of Isobutane/2-Butene Alkylation by CGC–FID and CGC-MS-DS
Author
Fu, Kaiwei 1 ; Liu, Bei 2 ; Chen, Xiaopeng 1 ; Chen, Zhiyu 1 ; Liang, Jiezhen 1 ; Zhang, Zhongyao 1 ; Wang, Linlin 1 

 Guangxi Key Laboratory of Petrochemical Resources Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China 
 PetroChina Guangxi Tiandong Petrochemical Co., Ltd., Tiandong 531599, China 
First page
6866
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728514620
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.