Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study aims to develop efficient topical therapy for keratomycosis using sertaconazolenitrate (STZN)-loaded leciplex (LP). The D-optimal design was used to optimize STZN-loaded LP by utilizing soy phosphatidylcholine (SPC) molar ratio (X1), cationic surfactant molar ratio (X2), and cationic surfactant type (X3) as the independent variables, whereas their impact was studied for entrapment efficiency percent (EE; Y1), particle size (PS; Y2), polydispersity index (PDI; Y3), zeta potential (ZP; Y4), and permeability coefficient (Kp; Y5). The optimized formula was evaluated regarding morphology, ex vivo permeation, mucoadhesion, stability, and in vivo studies. The optimized formula was spherical and showed EE of 84.87 ± 1.71%, PS of 39.70 ± 1.35 nm, PDI of 0.242 ± 0.006, ZP of +54.60 ± 0.24 mV, and Kp of 0.0577 ± 0.0001 cm/h. The ex vivo permeation study revealed that the optimized formula enhanced the Kp and corneal deposition by 2.78 and 12.49 folds, respectively, compared to the aqueous drug dispersion. Furthermore, the optimized formula was stable and revealed promising mucoadhesion properties. Finally, the in vivo studies showed that the optimized formula was superior to the drug dispersion in treating rats with induced keratomycosis. These results confirmed the capabilities of LP as a promising nanocarrier for treating ocular diseases topically.

Details

Title
Sertaconazole-Nitrate-Loaded Leciplex for Treating Keratomycosis: Optimization Using D-Optimal Design and In Vitro, Ex Vivo, and In Vivo Studies
Author
Abdellatif, Menna M 1   VIAFID ORCID Logo  ; Mina, Josef 1   VIAFID ORCID Logo  ; El-Nabarawi, Mohamed A 2 ; Teaima, Mahmoud 2 

 Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt 
 Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, Cairo 11562, Egypt 
First page
2215
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728521312
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.