Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Wetlands are the “kidneys” of the earth and are crucial to the ecological environment. In this study, we utilized GF-3 quad-polarimetric synthetic aperture radar (QP) images to classify the ground objects (nearshore water, seawater, spartina alterniflora, tamarix, reed, tidal flat, and suaeda salsa) in the Yellow River Delta through convolutional neural networks (CNNs) based on polarimetric features. In this case, four schemes were proposed based on the extracted polarimetric features from the polarization coherency matrix and reflection symmetry decomposition (RSD). Through the well-known CNNs: AlexNet and VGG16 as backbone networks to classify GF-3 QP images. After testing and analysis, 21 total polarimetric features from RSD and the polarization coherency matrix for QP image classification contributed to the highest overall accuracy (OA) of 96.54% and 94.93% on AlexNet and VGG16, respectively. The performance of the polarization coherency matrix and polarimetric power features was similar but better than just using three main diagonals of the polarization coherency matrix. We also conducted noise test experiments. The results indicated that OAs and kappa coefficients decreased in varying degrees after we added 1 to 3 channels of Gaussian random noise, which proved that the polarimetric features are helpful for classification. Thus, higher OAs and kappa coefficients can be acquired when more informative polarimetric features are input CNNs. In addition, the performance of RSD was slightly better than obtained using the polarimetric coherence matrix. Therefore, RSD can help improve the accuracy of polarimetric SAR image classification of wetland objects using CNNs.

Details

Title
Wetlands Classification Using Quad-Polarimetric Synthetic Aperture Radar through Convolutional Neural Networks Based on Polarimetric Features
Author
Zhang, Shuaiying 1 ; An, Wentao 2 ; Zhang, Yue 3 ; Cui, Lizhen 4 ; Xie, Chunhua 2 

 National Satellite Ocean Application Service, Beijing 100081, China; Key Laboratory of Space Ocean Remote Sensing and Applications, Ministry of Natural Resources, Beijing 100081, China; National Marine Environmental Forecasting Center, Beijing 100081, China 
 National Satellite Ocean Application Service, Beijing 100081, China; Key Laboratory of Space Ocean Remote Sensing and Applications, Ministry of Natural Resources, Beijing 100081, China 
 College of Oceanography and Space Informatics, China University of Petroluem (East China), Qingdao 266580, China 
 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 
First page
5133
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728525748
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.