Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

For high-resolution range profile (HRRP) radar target recognition in a low signal-to-noise ratio (SNR) scenario, traditional methods frequently perform denoising and recognition separately. In addition, they assume equivalent contributions of the target and the noise regions during feature extraction and fail to capture the global dependency. To tackle these issues, an integrated denoising and recognition network, namely, IDR-Net, is proposed. The IDR-Net achieves denoising through the denoising module after adversarial training, and learns the global relationship of the generated HRRP sequence using the attention-augmented temporal encoder. Furthermore, a hybrid loss is proposed to integrate the denoising module and the recognition module, which enables end-to-end training, reduces the information loss during denoising, and boosts the recognition performance. The experimental results on the measured HRRPs of three types of aircraft demonstrate that IDR-Net obtains higher recognition accuracy and more robustness to noise than traditional methods.

Details

Title
End-to-End Radar HRRP Target Recognition Based on Integrated Denoising and Recognition Network
Author
Liu, Xiaodan 1 ; Wang, Li 2 ; Bai, Xueru 1   VIAFID ORCID Logo 

 National Lab of Radar Signal Processing, Xidian University, Xi’an 710071, China 
 Key Laboratory of Electronic Information Countermeasure and Simulation Technology of Ministry of Education, Xidian University, Xi’an 710071, China 
First page
5254
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728527296
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.