Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To understand the microphysical characteristics of rainfall in four different climatological regions (called BOS, BUS, CPO, and JIN) in South Korea, DSDs and their variables, including the mass-weighted mean diameter (Dm) and normalized number concentration (logNw), were examined. To examine the characteristics of DSDs at four sites with different climatology and topography, data measured from Parsivel disdrometer and wind direction from Automatic Weather System (AWS) during rainy seasons from June to August for three years (2018 to 2020) were analyzed. The DSDs variables were calculated using Gamma distribution model. In the coastal area, larger raindrops with a lower number concentration occurred, whereas smaller raindrops with a higher number concentration dominated in the middle land and mountain region. The mountain area of CPO and middle land area of JIN had a larger contribution to the rain rate than that of the coastal area of BOS and JIN in the range of the smallest diameter. The contribution of the drop size to the total number concentration at the CPO and JIN sites was larger (smaller) than that at BOS and BUS in the smallest (larger) diameter. The average shape and slope parameter of gamma model were higher values at the mountain area than at other sites for both rain types, Z-R relation and polarimetric variables were also shown different values at the four studied sites. The intercept coefficient of Z-R relation showed higher values in the mountain area and middle land area than the coastal area. The slope values of Z-R relation were the smallest in the mountain area. The polarimetric variables of ZH and ZDR were shown highest (lowest) value at the coastal region of BOS (mountain area of CPO) site for both rain types. The Dm-rose, which shows the Dm distributions with the wind direction, was used in this study. In the coastal area (mountain and middle land area), the dominant wind was east–southeast (east) direction. The ratio of the smaller diameter to the middle size at BOS was much smaller than that at CPO. In the analysis of the hourly distribution of the Dm and logNw, there were two and four peaks of Dm at BUS and BOS, respectively. There was one peak of the Dm at the CPO and JIN sites. The time variation of the Dm was much higher than that of the logNw.

Details

Title
The Characteristics of Raindrop Size Distributions in Different Climatological Regions in South Korea
Author
Cheol-Hwan You 1   VIAFID ORCID Logo  ; Hyeon-Joon, Kim 2   VIAFID ORCID Logo  ; Sung-Ho, Suh 3   VIAFID ORCID Logo  ; Jung, Woonseon 4   VIAFID ORCID Logo  ; Mi-Young, Kang 1 

 Atmospheric Environmental Research Institute (AERI), Pukyong National University, Busan 48513, Korea 
 Department of Civil and Environmental Engineering, Chuang-Ang University, Seoul 06974, Korea 
 Flight Safety Technology Division, NARO Space Center, Korea Aerospace Research Institute (KARI), Goheung-gun 59571, Korea 
 National Institute of Meteorological Sciences, 33 Seohobuk-ro, Seongwipo-si 63568, Korea 
First page
5137
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728530890
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.