Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Understanding the effect surface production has on polymer properties is important in the design of advanced materials. The aim of this study was to determine how the moulding process affected the rate of hydrolysis and the topography, chemistry and physicochemistry of PVAc moulded, hydrolysed surfaces. Three different mould surface materials were used to produce compression moulded PVAc sheets which were treated with aqueous NaOH at a range of concentrations. The Textile moulded sheet demonstrated the best hydrolysis results. The topography of the moulded sheets was transferred to the surfaces and the Kapton release sheet was visually smooth at lower magnification and demonstrated some pitting at higher magnification. The Teflon surface had features transferred from the coated stainless steel at lower magnifications and linear features at higher magnifications and the textile surface had a wrinkled appearance and irregularly spaced peaks. The release sheet used to mould the PVAc surfaces, affected the physicochemical parameters. The Kapton moulded surface demonstrated the most polar attributes and the Teflon surface the most dispersive. It was clear that the selection of the mould material had an influence on surface properties and hydrolysis of moulded PVAc. Such information is important for engineering design in industrial processes.

Details

Title
Interfacial Surface Properties of Compression Moulded Hydrolysed Polyvinyl Acetate (PVAc) Using Different Release Materials
Author
Whitehead, Kathryn A 1   VIAFID ORCID Logo  ; Amin, Mohsin 1 ; Deisenroth, Ted 2 ; Liauw, Christopher M 1 ; Verran, Joanna 1   VIAFID ORCID Logo 

 Microbiology at Interfaces, Manchester Metropolitan University, Chester Str., Manchester M1 5GD, UK 
 BASF Corporation (Formerly Ciba Speciality Chemicals Inc.), Tarrytown, NY 10591, USA 
First page
2063
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728532089
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.