It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The electrochemical oxygen reduction reaction (ORR) is at the heart of modern sustainable energy technologies. However, the linear scaling relationship of this multistep reaction now becomes the bottleneck for accelerating kinetics. Herein, we propose a strategy of using intermetallic-distance-regulated atomic-scale bimetal assembly (ABA) that can catalyse direct O‒O radical breakage without the formation of redundant *OOH intermediates, which could regulate the inherent linear scaling relationship and cause the ORR on ABA to follow a fast-kinetic dual-sites mechanism. Using in situ synchrotron spectroscopy, we directly observe that a self-adjustable N-bridged Pt = N2 = Fe assembly promotes the generation of a key intermediate state (Pt‒O‒O‒Fe) during the ORR process, resulting in high reaction kinetics and selectivity. The well-designed Pt = N2 = Fe ABA catalyst achieves a nearly two orders of magnitude enhanced kinetic current density at the half-wave potential of 0.95 V relative to commercial Pt/C and an almost 99% efficiency of 4-electron pathway selectivity, making it one of the potential ORR catalysts for application to the energy device of zinc‒air cells. This study provides a helpful design principle for developing and optimizing other efficient ORR electrocatalysts.
Improving kinetics for electrochemical oxygen reduction reaction is relevant to important sustainable energy technologies. The authors propose an atomic-scale bimetal assembly consisting Pt and Fe dual sites to regulate the inherent scaling relationship between intermediates for fast kinetics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, P. R. China (GRID:grid.59053.3a) (ISNI:0000000121679639)
2 University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, P. R. China (GRID:grid.59053.3a) (ISNI:0000000121679639); Anhui University, School of Materials Science and Engineering, Hefei, P. R. China (GRID:grid.252245.6) (ISNI:0000 0001 0085 4987)
3 University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, P. R. China (GRID:grid.59053.3a) (ISNI:0000000121679639); Hokkaido University, Institute for Catalysis, Sapporo, Japan (GRID:grid.39158.36) (ISNI:0000 0001 2173 7691)
4 Southwest University of Science and Technology, Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Mianyang, P. R. China (GRID:grid.440649.b) (ISNI:0000 0004 1808 3334)
5 Shihezi University, School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi, China (GRID:grid.411680.a) (ISNI:0000 0001 0514 4044)