Full Text

Turn on search term navigation

© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An increasing array of tools is being developed using artificial intelligence (AI) and machine learning (ML) for cancer imaging. The development of an optimal tool requires multidisciplinary engagement to ensure that the appropriate use case is met, as well as to undertake robust development and testing prior to its adoption into healthcare systems. This multidisciplinary review highlights key developments in the field. We discuss the challenges and opportunities of AI and ML in cancer imaging; considerations for the development of algorithms into tools that can be widely used and disseminated; and the development of the ecosystem needed to promote growth of AI and ML in cancer imaging.

Koh, Papanikolaou et al. discuss the application of artificial intelligence in cancer imaging. The authors highlight opportunities for exploiting machine learning algorithms in this field, and outline barriers in their implementation and how these might be addressed.

Details

Title
Artificial intelligence and machine learning in cancer imaging
Author
Koh, Dow-Mu 1   VIAFID ORCID Logo  ; Papanikolaou, Nickolas 2   VIAFID ORCID Logo  ; Bick, Ulrich 3   VIAFID ORCID Logo  ; Illing, Rowland 4 ; Kahn, Charles E. 5   VIAFID ORCID Logo  ; Kalpathi-Cramer, Jayshree 6 ; Matos, Celso 7 ; Martí-Bonmatí, Luis 8 ; Miles, Anne 9 ; Mun, Seong Ki 10   VIAFID ORCID Logo  ; Napel, Sandy 11   VIAFID ORCID Logo  ; Rockall, Andrea 12   VIAFID ORCID Logo  ; Sala, Evis 13   VIAFID ORCID Logo  ; Strickland, Nicola 12 ; Prior, Fred 14   VIAFID ORCID Logo 

 Royal Marsden Hospital, Department of Radiology, Sutton, UK (GRID:grid.424926.f) (ISNI:0000 0004 0417 0461) 
 Royal Marsden Hospital, Department of Radiology, Sutton, UK (GRID:grid.424926.f) (ISNI:0000 0004 0417 0461); Champalimaud Foundation, Lisbon, Portugal (GRID:grid.421010.6) (ISNI:0000 0004 0453 9636) 
 Charité – Universitätsmedizin Berlin, Berlin, Germany (GRID:grid.6363.0) (ISNI:0000 0001 2218 4662) 
 University College London, Department of Surgery & Interventional Science, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201) 
 University of Pennsylvania, Department of Radiology and Institute for Biomedical Informatics, Philadelphia, USA (GRID:grid.25879.31) (ISNI:0000 0004 1936 8972) 
 Massachusetts General Hospital/Harvard Medical School, Centre for machine learning, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X) 
 Champalimaud Foundation, Lisbon, Portugal (GRID:grid.421010.6) (ISNI:0000 0004 0453 9636) 
 Hospital Universitari i Politècnic La Fe, Department of Radiology, Valencia, Spain (GRID:grid.84393.35) (ISNI:0000 0001 0360 9602) 
 Birkbeck University, Department of Psychological Sciences, London, UK (GRID:grid.88379.3d) (ISNI:0000 0001 2324 0507) 
10  Virginia Tech, Arlington Innovation Center for Health Research, Arlington, USA (GRID:grid.438526.e) (ISNI:0000 0001 0694 4940) 
11  Stanford University, Department of Radiology, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956) 
12  Imperial College Healthcare NHS Trust, Department of Radiology, London, UK (GRID:grid.417895.6) (ISNI:0000 0001 0693 2181) 
13  Cambridge University, Department of Radiology, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934) 
14  University of Arkansas for Medical Sciences, Department of Biomedical Informatics and Department of Radiology, Little Rock, USA (GRID:grid.241054.6) (ISNI:0000 0004 4687 1637) 
Publication year
2022
Publication date
Dec 2022
Publisher
Springer Nature B.V.
e-ISSN
2730664X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2729325239
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.