Abstract
Background
With the development of assisted reproductive technology (ART), diseases believed to be caused by ART have begun to be identified as imprinted disease. However, no conclusion has been reached. So we sought to determine whether ART procedures disturb gene methylation and whether imprinted genes alone are selectively disturbed. To examine whether the constituents of the culture medium contribute to the changes in methylation, we used a mouse model to conduct IVF and comprehensively analyzed 5′–C–phosphate–G–3′ (CpG) by reduced representation bisulfite sequencing (RRBS) using a second-generation sequencer to determine changes in methylation using four types of culture media with different amino acid constituents.
Results
We cultured ova to the blastocyst stage in a mouse model in culture media with four different amino acid constituents. Each culture medium included (1) KSOM culture medium (NoAA), (2) KSOM media + essential amino acids (EAAs), (3) KSOM medium + non-essential amino acids (NEAAs), or (4) KSOM medium + EAAs + NEAAs (AllAA) analyzed by reduced representation bisulfite sequencing. The results showed that (1) there were many regions that maintained hypermethylation with NEAAs, (2) there was little effect of demethylation on reprogramming in the 5′UTR and promoter regions, and (3) specific changes were observed in imprinted genes such as Nnat and Nespas.
Conclusions
Compared with EAAs, NEAAs could protect genes from demethylation caused by reprogramming. On the imprinted genes, methylation of the promoter region of H19 was decreased by NEAAs, suggesting that specific genes were prone to changes in methylation. It was suggested that these changes could provide similar results in humans. Further studies are needed to understand how changes in methylation may affect gene expression profiles.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
; Nakabayashi, Kazuhiko 2 ; Arai, Miyuki 2 ; Okamura, Kohji 2 ; Hashimoto, Kazunori 3 ; Matsui, Hideo 3 ; Hata, Kenichiro 2 1 Tokyo Women’s Medical University, Tokyo, Japan (GRID:grid.410818.4) (ISNI:0000 0001 0720 6587); National Center for Child Health and Development, Tokyo, Japan (GRID:grid.63906.3a) (ISNI:0000 0004 0377 2305)
2 National Center for Child Health and Development, Tokyo, Japan (GRID:grid.63906.3a) (ISNI:0000 0004 0377 2305)
3 Tokyo Women’s Medical University, Tokyo, Japan (GRID:grid.410818.4) (ISNI:0000 0001 0720 6587)





