It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this work, hybrid nanocomposites of CuS QDs @ ZnO photocatalysts are fabricated through a facile microwave-assisted (MW) hydrothermal method as a green preparation process. The prepared photocatalysts (PCs) are employed under simulated sunlight (SL) for the degradation of ciprofloxacin, ceftriaxone, ibuprofen pharmaceuticals, methylene blue dye, and 2,4,5-trichlorophenoxyacetic acid (2,4-D) pesticide. The prepared photocatalysts are characterized in detail using several compositional, optical, and morphological techniques. The influence of the CuS (QDs) wt. % on morphological, structural, as well as photocatalytic degradation efficiency have been investigated. The small displacement between the (107) plane of CuS and the (102) plane of ZnO can confirmed the existence of lattice interaction, implying the formation of p-n heterojunctions. TEM and XRD results demonstrated that the CuS QDs are established and uniformly decorated on the surface of ZnO NRs, confirming the forming of an efficient CuS QDs @ ZnO heterojunction nanostructures. The CuS QDs @ ZnO hybrid nanocomposites showed enhancement in crystallinity, light absorption, surface area, separation of e–h pair and inhibition in their recombination at an interfacial heterojunction. In addition it is found that, 3 wt% CuS QDs @ ZnO has the foremost influence. The results showed improvement of photocatalytic activity of the 3% CuS QDs @ ZnO hybrid nanocomposite as compared to the bare ZnO nanorods. The impressive photocatalytic performance of CuS @ ZnO heterostructure nanorods may be attributed to efficient charge transfer. The prepared CuS QDs @ ZnO hybrid nanocomposites exhibited 100% removal for MB dye, after 45 min, and after 60 min for ibuprofen, ciprofloxacin pharmaceuticals, and 2.4.5 trichloro phenoxy acetic acid pesticide with the catalyst amount of 0.2 g/L. Although 100% removal of ceftriaxone pharmaceutical acheived after 90 min. In addition CuS QDs @ ZnO hybrid nanocomposites exhibited complete removal of COD for ibuprofen, ceftriaxone pharmaceuticals and 2.4.5 trichloro phenoxy acetic acid pesticide after 2 h with no selectivity. Briefly, 3% CuS QDs@ZnO hybrid nanocomposites can be considered as promising photoactive materials under simulated sunlight for wastewater decontamination.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Aim Shams University, Physics Department, Faculty of Science, Cairo, Egypt
2 National Research Centre, Water Pollution Research Department, Institute of Environmental Research and Climate Changes, Cairo, Egypt (GRID:grid.419725.c) (ISNI:0000 0001 2151 8157)
3 Aim Shams University, Physics Department, Faculty of Science, Cairo, Egypt (GRID:grid.419725.c)