Abstract
The visible Universe is largely characterised by a single mass scale, namely, the proton mass, mp. Contemporary theory suggests that mp emerges as a consequence of gluon self-interactions, which are a defining characteristic of quantum chromodynamics (QCD), the theory of strong interactions in the Standard Model. However, the proton is not elementary. Its mass appears as a corollary of other, more basic emergent phenomena latent in the QCD Lagrangian, e.g. generation of nuclear-size gluon and quark mass-scales, and a unique effective charge that may describe QCD interactions at all accessible momentum scales. These remarks are explained herein, and focusing on the distribution amplitudes and functions of π and K mesons, promising paths for their empirical verification are elucidated. Connected therewith, in anticipation that production of J/ψ-mesons using π and K beams can provide access to the gluon distributions in these pseudo-Nambu-Goldstone modes, predictions for all π and K distribution functions are provided at the scale ζ=mJ/ψ.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Nanjing University, School of Physics, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X); Nanjing University, Institute for Nonperturbative Physics, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X)





