It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In dielectric laser-driven accelerators (DLA), careful tuning of drive-laser wavelength and structure periodicity is typically required in order to hit the resonant condition and match the phase velocity of the accelerating wave to the electron beam velocity. By aggressively detuning (up to 30 mrad) the angle of incidence of the drive laser on a double grating DLA structure, we show that it is possible to recover resonant phase matching and maximize the energy modulation of an externally injected 6 MeV beam in an 800 nm period structure driven using a 780 nm laser. These results show that it is possible to power DLA structures away from their design working point, and excite accelerating fields in the gap with phase profiles that change by a relatively large amount period-to-period. This flexibility is a key feature of DLAs and a critical element in the realization of phase modulation–based ponderomotive focusing to demonstrate MeV energy gain and large capture in a single DLA stage.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





