It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the present work, a reaction methodology was implemented using a batch reactor, which synthesized glycerol carbonate (GC) using glycerin and CaCO3. A crystallographic analysis of CaCO3 was performed to determine its crystalline form. The obtained product was characterized by infrared spectroscopy, thermogravimetric analysis and nuclear magnetic resonance (1H and 13C). Our analysis demonstrated that the obtained product with the implemented reaction methodology has GC, FTIR showed the signals of the carbonyl groups, and the NMR spectrum confirmed the presence of cyclic carbonate structure in addition to linear carbonates. The thermogravimetric study showed that the thermal stability of the product is highly similar to that reported for GC. These results exhibit that the synthesis process produces linear and cyclic carbonates.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer