Full text

Turn on search term navigation

© 2022. This work is published under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Uticaj naprezanja na koroziono ponašanje ultra sitnozrnog (UFG) bakra pripremljenog intenzivnom plastičnom deformacijom (SPD) ispitan je u pogledu mikrostrukturne evolucije. SPD obradeni materijal je pokazao ultra sitnozrnu (UFG) strukturu nakon prečišcavanja zrna tokom nekoliko vremenskih procesa, što ce uticati na mehaničko i koroziono ponašanje. Homogenost se može efikasno postici kroz proces presovanja, jednostavne ekstruzije smicanja (SSE), koja je jedna od SPD tehnika. Čisti bakar je obradivan SSE procesom tokom dva, četiri, osam i dvanaest prolaza. Struktura uzorka tretiranog SSE posmatrana je laserskim mikroskopom i transmisionim elektronskim mikroskopom, kao i difrakcijom rendgenskih zraka. Pomocu potenciodinamičke polarizacione krive primeceno je korozivno ponašanje u modifikovanom Livingstonovom rastvoru, 1 M NaCl i rastvoru sumpora. Struktura uzorka tretiranog SSE pokazala je da je prvi prolaz uzorka obradenog SSE pokazao veliku deformaciju razvijanjem izdužene strukture zrna i podzrna. Povećanjem SSE broja prolaza, oblik zrna je postao jednakoosan zbog prevelikog naprezanja. Širenje rendgenskih zraka na uzorku bakra sa ultra sitnozrnastom strukturom (UFG) obradenog SSE dovelo je do manje veličine kristalita, veceg mikronaprezanja i vece gustine dislokacije. Na materijalu sa UFG strukturom razvijen je homogeniji pasivni film. Medutim, gustina struje u 1 M NaCl je smanjena povecanjem brojaprolaza usled rastvaranja metala bakra. UFG struktura ima više granica od grubo zrnaste strukture, a ovi fenomeni pokazuju zašto sposobnost rastvaranja Cu utiče na gustinu struje. Granica zrna se ponaša kao katodno mesto.

Alternate abstract:

Effect of strain energy on corrosion behavior of ultrafine-grained (UFG) copper prepared by severe plastic deformation (SPD) was investigated in terms of microstructural evolution. The SPD processed material showed an ultrafine-grained (UFG) structure after grain refinement for several time processes, which will affect mechanical and corrosion behavior Homogeneity can be obtained efficiently through the pressing process commonly known as simple shear extrusion (SSE), which is one of the SPD techniques. Pure copper was processed by SSE for two, four, eight, and twelve passes. The structure of SSE treated sample was observed by laser microscope and transmission electron microscope as well as X-ray diffraction. The corrosion behavior by potentiodynamic polarization curve was observed in modified Livingstone solution, 1 M NaCl, and sulphuric solution. The structure of SSE processed sample showed that the first pass of the SSE processed sample displayed large deformation by developing the elongated grain and sub-grain structure. By increasing the SSE pass number, the grain shape became equiaxed due to excessive strain. The X-ray broadening related to ultrafine-grained (UFG) structure processed SSE on the copper sample, leading to smaller crystallite size, higher microstrain, and higher dislocation density. More homogeneous passive film was developed on the material with UFG structure appearance. However, the current density in 1 M NaCl was decreased by an increment of pass number due to the dissolution of copper metal. The UFG structure has more boundaries than coarse grain structure, and these phenomena show why Cu dissolve ability influences the current density. The grain boundary behaves as the cathodic site.

Details

Title
EFFECT OF STRAIN ENERGY ON CORROSION BEHAVIOR OF ULTRAFINE GRAINED COPPER PREPARED BY SEVERE PLASTIC DEFORMATION
Author
Rifai, M 1 ; Mujamilah, M 2 ; Bagherpour, E 3 ; Miyamoto, H 4 

 Research Center for Accelerator Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Serpong, Tangerang Selatan, Banten, Indonesia 
 Research Center for Radiation Detector and Nuclear Analysis, Research Organization for Nuclear Energy, National Research and Innovation Agency, Serpong, Tangerang Selatan, Banten, Indonesia 
 Brunel Center for Advanced Solidification Technology, Brunel University London, Uxbridge, UK 
 Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto, Japan 
Pages
335-344
Publication year
2022
Publication date
2022
Publisher
Technical Faculty Bor, University of Belgrade
ISSN
14505339
e-ISSN
22177175
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734337362
Copyright
© 2022. This work is published under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.