Full Text

Turn on search term navigation

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Worldwide infection due to SARS-CoV-2 revealed that short-time and extremely high-sensitivity detection of nucleic acids is a crucial technique for human beings. Polymerase chain reactions have been mainly used for the SARS-CoV-2 detection over the years. However, an advancement in quantification of the detection and shortening runtime is important for present and future use. Here, we report a rapid detection scheme that is a combination of nucleic acid amplification and a highly efficient fluorescence biosensor, that is, a metasurface biosensor composed of a pair of an all-dielectric metasurface and a microfluidic transparent chip. In the present scheme, we show a series of proof-of-concept experimental results that the metasurface biosensors detected amplicons originating from attomolar SARS-CoV-2 nucleic acids and that the amplification was implemented within 1 h. Furthermore, this detection capability substantially satisfies an official requirement of 100 RNA copies/140 μL, which is a criterion for the reliable infection tests.

Details

Title
Rapid Detection of Attomolar SARS-CoV-2 Nucleic Acids in All-Dielectric Metasurface Biosensors
Author
Iwanaga, Masanobu  VIAFID ORCID Logo 
First page
987
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734603957
Copyright
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.