Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

The highly metastatic and immunosuppressive microenvironment of ovarian cancers is a major determinant of the aggressive nature and therapeutic resistance of ovarian cancer. Therefore, we believe that a thorough understanding of the mechanisms that regulate the composition and function of the tumor microenvironment is critical for the development of a more effective course of treatment for this devastating malignancy. This review summarizes the recent literature on the major metabolic pathways affecting macrophage immune metabolism and its impact on phenotypic and functional changes in macrophages in the ovarian tumor microenvironment.

Abstract

The interaction between tumor cells and macrophages in the tumor microenvironment plays an essential role in metabolic changes in macrophages and reprograms them towards a pro-tumorigenic phenotype. Increasing evidence indicates that macrophage metabolism is a highly complex process and may not be as simple as previously thought. Pro-inflammatory stimuli switch macrophages towards an M1-like phenotype and rely mainly on aerobic glycolysis and fatty acid synthesis, whereas anti-inflammatory stimuli switch macrophages towards an M2-like phenotype. M2-like macrophages depend more on oxidative phosphorylation (OXPHOS) and fatty acid oxidation. However, this metabolically reprogrammed phenotypic switch in macrophages remained a mystery for a while. Therefore, through this review, we tend to describe how macrophage immunometabolism determines macrophage phenotypes and functions in tumor microenvironments (TMEs). Furthermore, we have discussed how metabolic reprogramming in TAM can be used for therapeutic intervention and drug resistance in ovarian cancer.

Details

Title
Metabolic Reprogramming in Tumor-Associated Macrophages in the Ovarian Tumor Microenvironment
Author
Kumar, Sudhir 1   VIAFID ORCID Logo  ; Mittal, Sonam 1 ; Gupta, Prachi 1 ; Singh, Mona 1 ; Chaluvally-Raghavan, Pradeep 2   VIAFID ORCID Logo  ; Sunila Pradeep 2   VIAFID ORCID Logo 

 Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA 
 Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA 
First page
5224
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734614228
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.