Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Polymer microparticles are used in additive manufacturing, separation and purification devices, biocatalysis, or for the recognition of biomolecules. This study reports on the effect of metal fillers on the structure and molecular dynamics of polyamide 6 (PA6) microparticles (MPs) containing up to 19 wt.% of Al, Cu, or Mg. These hybrid MPs are synthesized via reactive microencapsulation by anionic ring-opening polymerization in solution, in the presence of the metal filler. 13C high-resolution solid-state NMR (ssNMR) spectroscopy is employed as the primary characterization method using magic angle spinning (MAS) and cross-polarization (CP)/MAS. Depending on the metal filler, the ssNMR crystallinity index of the MP varies between 39–50%, as determined by deconvolution of the 13C MAS and CP/MAS spectra. These values correlate very well with the crystallinity derived from thermal or X-ray diffraction data. The molecular dynamics study on PA6 and Cu-containing MP shows similar mobility of carbon nuclei in the kHz, but not in the MHz frequency ranges. The paramagnetic Al and Mg have an observable effect on the relaxation; however, conclusions regarding the PA6 carbon motions cannot be unequivocally made. These results are useful in the preparation of hybrid microparticles with customized structures and magneto-electrical properties.

Details

Title
Structure and Molecular Dynamics in Metal-Containing Polyamide 6 Microparticles
Author
Oliveira, Filipa M 1   VIAFID ORCID Logo  ; Nunes, Teresa G 2 ; Dencheva, Nadya V 1   VIAFID ORCID Logo  ; Denchev, Zlatan Z 1   VIAFID ORCID Logo 

 Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, 4800-058 Guimarães, Portugal 
 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal 
First page
1579
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734620191
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.