Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Out-of-Distribution (OOD) detection separates ID (In-Distribution) data and OOD data from input data through a model. This problem has attracted increasing attention in the area of machine learning. OOD detection has achieved good intrusion detection, fraud detection, system health monitoring, sensor network event detection, and ecosystem interference detection. The method based on deep learning is the most studied in OOD detection. In this paper, related basic information on OOD detection based on deep learning is described, and we categorize methods according to the training data. OOD detection is divided into supervised, semisupervised, and unsupervised. Where supervised data are used, the methods are categorized according to technical means: model-based, distance-based, and density-based. Each classification is introduced with background, examples, and applications. In addition, we present the latest applications of OOD detection based on deep learning and the problems and expectations in this field.

Details

Title
Out-of-Distribution (OOD) Detection Based on Deep Learning: A Review
Author
Cui, Peng 1 ; Wang, Jinjia 1   VIAFID ORCID Logo 

 School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao 066004, China 
First page
3500
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734621625
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.