Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Schizochytrium sp. is a microorganism cultured for producing docosahexaenoic acid (DHA). Genome-scale metabolic modeling (GEM) is a promising technique for describing gen-protein-reactions in cells, but with still limited industrial application due to its complexity and high computation requirements. In this work, we simplified GEM results regarding the relationship between the specific oxygen uptake rate (−rO2), the specific growth rate (µ), and the rate of lipid synthesis (rL) using an evolutionary algorithm for developing a model that can be used by a soft sensor for fermentation monitoring. The soft sensor estimated the concentration of active biomass (X), glutamate (N), lipids (L), and DHA in a Schizochytrium sp. fermentation using the dissolved oxygen tension (DO) and the oxygen mass transfer coefficient (kLa) as online input variables. The soft sensor model described the biomass concentration response of four reported experiments characterized by different kLa values. The average range normalized root-mean-square error for X, N, L, and DHA were equal to 1.1, 1.3, 1.1, and 3.2%, respectively, suggesting an acceptable generalization capacity. The feasibility of implementing the soft sensor over a low-cost electronic board was successfully tested using an Arduino UNO, showing a novel path for applying GEM-based soft sensors in the context of Pharma 4.0.

Details

Title
Arduino Soft Sensor for Monitoring Schizochytrium sp. Fermentation, a Proof of Concept for the Industrial Application of Genome-Scale Metabolic Models in the Context of Pharma 4.0
Author
Alarcon, Claudio 1   VIAFID ORCID Logo  ; Shene, Carolina 2   VIAFID ORCID Logo 

 Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco 4781312, Chile 
 Departament of Chemical Engineering, Engineering Faculty and Center of Food Biotechnology and BIOREN, Universidad de La Frontera, Temuco 4811230, Chile 
First page
2226
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734709789
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.