Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Object detection is a computer vision task that involves localisation and classification of objects in an image. Video data implicitly introduces several challenges, such as blur, occlusion and defocus, making video object detection more challenging in comparison to still image object detection, which is performed on individual and independent images. This paper tackles these challenges by proposing an attention-heavy framework for video object detection that aggregates the disentangled features extracted from individual frames. The proposed framework is a two-stage object detector based on the Faster R-CNN architecture. The disentanglement head integrates scale, spatial and task-aware attention and applies it to the features extracted by the backbone network across all the frames. Subsequently, the aggregation head incorporates temporal attention and improves detection in the target frame by aggregating the features of the support frames. These include the features extracted from the disentanglement network along with the temporal features. We evaluate the proposed framework using the ImageNet VID dataset and achieve a mean Average Precision (mAP) of 49.8 and 52.5 using the backbones of ResNet-50 and ResNet-101, respectively. The improvement in performance over the individual baseline methods validates the efficacy of the proposed approach.

Details

Title
Attention-Guided Disentangled Feature Aggregation for Video Object Detection
Author
Muralidhara, Shishir 1   VIAFID ORCID Logo  ; Khurram Azeem Hashmi 2   VIAFID ORCID Logo  ; Pagani, Alain 3 ; Liwicki, Marcus 4   VIAFID ORCID Logo  ; Stricker, Didier 5 ; Afzal, Muhammad Zeshan 2   VIAFID ORCID Logo 

 Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany; Mindgarage, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany 
 Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany; Mindgarage, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany; German Research Institute for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany 
 German Research Institute for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany 
 Department of Computer Science, Luleå University of Technology, 971 87 Luleå, Sweden 
 Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany; German Research Institute for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany 
First page
8583
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734744724
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.