Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The prevalence of chronic diseases and the rapid rise in the aging population are some of the major challenges in our society. The utilization of the latest and unique technologies to provide fast, accurate, and economical ways to collect and process data is inevitable. Industry 4.0 (I4.0) is a trend toward automation and data exchange. The utilization of the same concept of I4.0 in healthcare is termed Healthcare 4.0 (H4.0). Digital Twin (DT) technology is an exciting and open research field in healthcare. DT can provide better healthcare in terms of improved patient monitoring, better disease diagnosis, the detection of falls in stroke patients, and the analysis of abnormalities in breathing patterns, and it is suitable for pre- and post-surgery routines to reduce surgery complications and improve recovery. Accurate data collection is not only important in medical diagnoses and procedures but also in the creation of healthcare DT models. Health-related data acquisition by unobtrusive microwave sensing is considered a cornerstone of health informatics. This paper presents the 3D modeling and analysis of unobtrusive microwave sensors in a digital care-home model. The sensor is studied for its performance and data-collection capability with regards to patients in care-home environments.

Details

Title
Evaluation of Unobtrusive Microwave Sensors in Healthcare 4.0—Toward the Creation of Digital-Twin Model
Author
Khan, Sagheer; Saied, Imran M; Ratnarajah, Tharmalingam; Arslan, Tughrul
First page
8519
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734745380
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.