Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

There is a great demand for human–machine interfaces (HMIs) in emerging electronics applications. However, commercially available plastic-based HMIs are primarily rigid, application-specific, and hard to recycle and dispose of due to their non-biodegradability. This results in electronic and plastic waste, potentially damaging the environment by ending up in landfills and water resources. This work presents a green, capacitive pressure-sensitive (CPS), touch sensor-based keypad as a disposable, wireless, and intelligent HMI to mitigate these problems. The CPS touch keypads were fabricated through a facile green fabrication process by direct writing of graphite-on-paper, using readily available materials such as paper and pencils, etc. The interdigitated capacitive (IDC) touch sensors were optimized by analyzing the number of electrode fingers, dimensions, and spacing between the electrode fingers. The CPS touch keypad was customized to wirelessly control a robotic arm’s movements based on the touch input. A low-pressure touch allows slow-speed robotic arm movement for precision movements, and a high-pressure touch allows high-speed robotic arm movement to cover the large movements quickly. The green CPS touch keypad, as a disposable wireless HMI, has the potential to enforce a circular economy by mitigating electronic and plastic waste, which supports the vision of a sustainable and green world.

Details

Title
Facile Pressure-Sensitive Capacitive Touch Keypad for a Green Intelligent Human–Machine Interface
Author
Malik, Muhammad Shumail 1   VIAFID ORCID Logo  ; Muhammad Hamza Zulfiqar 1 ; Muhammad Atif Khan 2 ; Muhammad Qasim Mehmood 2   VIAFID ORCID Logo  ; Massoud, Yehia 2 

 Department of Biomedical Engineering, Narowal Campus, University of Engineering and Technology, Lahore 54890, Pakistan 
 Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia 
First page
8113
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734749375
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.